Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(2): e17212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990959

RESUMO

Invasive species are predicted to adjust their morphological, physiological and life-history traits to adapt to their non-native environments. Although a loss of genetic variation during invasion may restrict local adaptation, introduced species often thrive in novel environments. Despite being founded by just a few individuals, Bombus terrestris (Hymenoptera: Apidae) has in less than 30 years successfully spread across the island of Tasmania (Australia), becoming abundant and competitive with native pollinators. We use RADseq to investigate what neutral and adaptive genetic processes associated with environmental and morphological variation allow B. terrestris to thrive as an invasive species in Tasmania. Given the widespread abundance of B. terrestris, we expected little genetic structure across Tasmania and weak signatures of environmental and morphological selection. We found high gene flow with low genetic diversity, although with significant isolation-by-distance and spatial variation in effective migration rates. Restricted migration was evident across the mid-central region of Tasmania, corresponding to higher elevations, pastural land, low wind speeds and low precipitation seasonality. Tajima's D indicated a recent population expansion extending from the south to the north of the island. Selection signatures were found for loci in relation to precipitation, wind speed and wing loading. Candidate loci were annotated to genes with functions related to cuticle water retention and insect flight muscle stability. Understanding how a genetically impoverished invasive bumblebee has rapidly adapted to a novel island environment provides further understanding about the evolutionary processes that determine successful insect invasions, and the potential for invasive hymenopteran pollinators to spread globally.


Assuntos
Fluxo Gênico , Espécies Introduzidas , Animais , Austrália , Abelhas/genética , Variação Genética/genética , Tasmânia
2.
Ecol Evol ; 13(11): e10721, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034325

RESUMO

Experimental introductions of species have provided some of the most tractable examples of rapid phenotypic changes, which may reflect plasticity, the impact of stochastic processes, or the action of natural selection. Yet to date, very few studies have investigated the neutral and potentially adaptive genetic impacts of experimental introductions. We dissect the role of these processes in shaping the population differentiation of wall lizards in three Croatian islands (Susac, Pod Kopiste, and Pod Mrcaru), including the islet of Pod Mrcaru, where experimentally introduced lizards underwent rapid (~30 generations) phenotypic changes associated with a shift from an insectivorous to a plant-based diet. Using a genomic approach (~82,000 ddRAD loci), we confirmed a founder effect during introduction and very low neutral genetic differentiation between the introduced population and its source. However, genetic depletion did not prevent rapid population growth, as the introduced lizards exhibited population genetic signals of expansion and are known to have reached a high density. Our genome-scan analysis identified just a handful of loci showing large allelic shifts between ecologically divergent populations. This low overall signal of selection suggests that the extreme phenotypic differences observed among populations are determined by a small number of large-effect loci and/or that phenotypic plasticity plays a major role in phenotypic changes. Nonetheless, functional annotation of the outlier loci revealed some candidate genes relevant to diet-induced adaptation, in agreement with the hypothesis of directional selection. Our study provides important insights on the evolutionary potential of bottlenecked populations in response to new selective pressures on short ecological timescales.

3.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590950

RESUMO

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , Ecossistema , Rearranjo Gênico , Genômica , Cromossomos/genética
5.
Evol Appl ; 16(5): 1044-1060, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37216031

RESUMO

Blue mussels from the genus Mytilus are an abundant component of the benthic community, found in the high latitude habitats. These foundation species are relevant to the aquaculture industry, with over 2 million tonnes produced globally each year. Mussels withstand a wide range of environmental conditions and species from the Mytilus edulis complex readily hybridize in regions where their distributions overlap. Significant effort has been made to investigate the consequences of environmental stress on mussel physiology, reproductive isolation, and local adaptation. Yet our understanding on the genomic mechanisms underlying such processes remains limited. In this study, we developed a multi species medium-density 60 K SNP-array including four species of the Mytilus genus. SNPs included in the platform were called from 138 mussels from 23 globally distributed mussel populations, sequenced using a whole-genome low coverage approach. The array contains polymorphic SNPs which capture the genetic diversity present in mussel populations thriving across a gradient of environmental conditions (~59 K SNPs) and a set of published and validated SNPs informative for species identification and for diagnosis of transmissible cancer (610 SNPs). The array will allow the consistent genotyping of individuals, facilitating the investigation of ecological and evolutionary processes in these taxa. The applications of this array extend to shellfish aquaculture, contributing to the optimization of this industry via genomic selection of blue mussels, parentage assignment, inbreeding assessment and traceability. Further applications such as genome wide association studies (GWAS) for key production traits and those related to environmental resilience are especially relevant to safeguard aquaculture production under climate change.

6.
Genome Biol Evol ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210218

RESUMO

Cold-water corals form an important part of temperate benthic ecosystems by increasing three-dimensionality and providing an important ecological substrate for other benthic fauna. However, the fragile three-dimensional structure and life-history characteristics of cold-water corals can leave populations vulnerable to anthropogenic disturbance. Meanwhile, the ability of temperate octocorals, particularly shallow-water species, to respond to adjustments in their environment linked to climate change has not been studied. This study reports the first genome assembly of the pink sea fan (Eunicella verrucosa), a temperate shallow-water octocoral species. We produced an assembly of 467 Mb, comprising 4,277 contigs and an N50 of 250,417 bp. In total, 213 Mb (45.96% of the genome) comprised repetitive sequences. Annotation of the genome using RNA-seq data derived from polyp tissue and gorgonin skeleton resulted in 36,099 protein-coding genes after 90% similarity clustering, capturing 92.2% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) ortholog benchmark genes. Functional annotation of the proteome using orthology inference identified 25,419 annotated genes. This genome adds to the very few genomic resources currently available in the octocoral community and represents a key step in allowing scientists to investigate the genomic and transcriptomic responses of octocorals to climate change.


Assuntos
Antozoários , Ecossistema , Animais , Antozoários/genética , Genoma , Genômica , Água
7.
Mol Phylogenet Evol ; 179: 107671, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442764

RESUMO

Speciation is a continuous and complex process shaped by the interaction of numerous evolutionary forces. Despite the continuous nature of the speciation process, the implementation of conservation policies relies on the delimitation of species and evolutionary significant units (ESUs). Puffinus shearwaters are globally distributed and threatened pelagic seabirds. Due to remarkable morphological status the group has been under intense taxonomic debate for the past three decades. Here, we use double digest Restriction-Site Associated DNA sequencing (ddRAD-Seq) to genotype species and subspecies of North Atlantic and Mediterranean Puffinus shearwaters across their entire geographical range. We assess the phylogenetic relationships and population structure among and within the group, evaluate species boundaries, and characterise the genomic landscape of divergence. We find that current taxonomies are not supported by genomic data and propose a more accurate taxonomy by integrating genomic information with other sources of evidence. Our results show that several taxon pairs are at different stages of a speciation continuum. Our study emphasises the potential of genomic data to resolve taxonomic uncertainties, which can help to focus management actions on relevant taxa, even if they do not necessarily coincide with the taxonomic rank of species.


Assuntos
Genoma , Genômica , Animais , Filogenia , Especificidade da Espécie , Aves/genética
8.
Evol Appl ; 15(3): 365-382, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386397

RESUMO

The global movement of bees for agricultural pollination services can affect local pollinator populations via hybridization. When commercial bumblebees are of the same species but of different geographic origin, intraspecific hybridization may result in beneficial integration of new genetic variation, or alternatively may disrupt locally adapted gene complexes. However, neither the existence nor the extent of genomic introgression and evolutionary divergence between wild and commercial bumblebees is fully understood. We obtained whole-genome sequencing data from wild and commercial Bombus terrestris collected from sites in Southern Sweden with and without long-term use of commercially imported B. terrestris. We search for evidence of introgression, dispersal and genome-wide differentiation in a comparative genomic analysis of wild and commercial bumblebees. Commercial B. terrestris were found in natural environments near sites where commercial bumblebees were used, as well as drifting wild B. terrestris in commercial bumblebee colonies. However, we found no evidence for widespread, recent genomic introgression of commercial B. terrestris into local wild conspecific populations. We found that wild B. terrestris had significantly higher nucleotide diversity (Nei's pi, π), while the number of segregating sites (Watterson's theta, θw) was higher in commercial B. terrestris. A highly divergent region on chromosome 11 was identified in commercial B. terrestris and found to be enriched with structural variants. The genes present in this region are involved in flight muscle contraction and structure and pathogen immune response, providing evidence for differing evolutionary processes operating in wild and commercial B. terrestris. We did not find evidence for recent introgression, suggesting that co-occurring commercial B. terrestris have not disrupted evolutionary processes in wild B. terrestris populations.

9.
Evol Lett ; 6(2): 149-161, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386829

RESUMO

Although rapid phenotypic evolution has been documented often, the genomic basis of rapid adaptation to natural environments is largely unknown in multicellular organisms. Population genomic studies of experimental populations of Trinidadian guppies (Poecilia reticulata) provide a unique opportunity to study this phenomenon. Guppy populations that were transplanted from high-predation (HP) to low-predation (LP) environments have been shown to evolve toward the phenotypes of naturally colonized LP populations in as few as eight generations. These changes persist in common garden experiments, indicating that they have a genetic basis. Here, we report results of whole genome variation in four experimental populations colonizing LP sites along with the corresponding HP source population. We examined genome-wide patterns of genetic variation to estimate past demography and used a combination of genome scans, forward simulations, and a novel analysis of allele frequency change vectors to uncover the signature of selection. We detected clear signals of population growth and bottlenecks at the genome-wide level that matched the known history of population numbers. We found a region on chromosome 15 under strong selection in three of the four populations and with our multivariate approach revealing subtle parallel changes in allele frequency in all four populations across this region. Investigating patterns of genome-wide selection in this uniquely replicated experiment offers remarkable insight into the mechanisms underlying rapid adaptation, providing a basis for comparison with other species and populations experiencing rapidly changing environments.

10.
Nat Commun ; 13(1): 1233, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264556

RESUMO

Male colour patterns of the Trinidadian guppy (Poecilia reticulata) are typified by extreme variation governed by both natural and sexual selection. Since guppy colour patterns are often inherited faithfully from fathers to sons, it has been hypothesised that many of the colour trait genes must be physically linked to sex determining loci as a 'supergene' on the sex chromosome. Here, we phenotype and genotype four guppy 'Iso-Y lines', where colour was inherited along the patriline for 40 generations. Using an unbiased phenotyping method, we confirm the breeding design was successful in creating four distinct colour patterns. We find that genetic differentiation among the Iso-Y lines is repeatedly associated with a diverse haplotype on an autosome (LG1), not the sex chromosome (LG12). Moreover, the LG1 haplotype exhibits elevated linkage disequilibrium and evidence of sex-specific diversity in the natural source population. We hypothesise that colour pattern polymorphism is driven by Y-autosome epistasis.


Assuntos
Poecilia , Animais , Feminino , Genótipo , Haplótipos/genética , Masculino , Fenótipo , Poecilia/genética , Cromossomos Sexuais
11.
Heredity (Edinb) ; 128(4): 250-260, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35256765

RESUMO

The genetic basis of traits shapes and constrains how adaptation proceeds in nature; rapid adaptation can proceed using stores of polygenic standing genetic variation or hard selective sweeps, and increasing polygenicity fuels genetic redundancy, reducing gene re-use (genetic convergence). Guppy life history traits evolve rapidly and convergently among natural high- and low-predation environments in northern Trinidad. This system has been studied extensively at the phenotypic level, but little is known about the underlying genetic architecture. Here, we use four independent F2 QTL crosses to examine the genetic basis of seven (five female, two male) guppy life history phenotypes and discuss how these genetic architectures may facilitate or constrain rapid adaptation and convergence. We use RAD-sequencing data (16,539 SNPs) from 370 male and 267 female F2 individuals. We perform linkage mapping, estimates of genome-wide and per-chromosome heritability (multi-locus associations), and QTL mapping (single-locus associations). Our results are consistent with architectures of many loci of small-effect for male age and size at maturity and female interbrood period. Male trait associations are clustered on specific chromosomes, but female interbrood period exhibits a weak genome-wide signal suggesting a potentially highly polygenic component. Offspring weight and female size at maturity are also associated with a single significant QTL each. These results suggest rapid, repeatable phenotypic evolution of guppies may be facilitated by polygenic trait architectures, but subsequent genetic redundancy may limit gene re-use across populations, in agreement with an absence of strong signatures of genetic convergence from recent analyses of wild guppies.


Assuntos
Traços de História de Vida , Poecilia , Animais , Mapeamento Cromossômico , Feminino , Masculino , Herança Multifatorial , Fenótipo , Poecilia/genética , Locos de Características Quantitativas
12.
PLoS Genet ; 17(5): e1009566, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34029313

RESUMO

Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.


Assuntos
Evolução Molecular , Variação Genética , Genoma/genética , Poecilia/genética , Comportamento Predatório , Alelos , Animais , Cromossomos/genética , Introgressão Genética , Genética Populacional , Haplótipos
13.
Environ Sci Technol ; 54(24): 15935-15945, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227200

RESUMO

Exposure of male fish to estrogenic substances from wastewater treatment works (WwTWs) results in feminization and reduced reproductive fitness. Nevertheless, self-sustaining populations of roach (Rutilus rutilus) inhabit river stretches polluted with estrogenic WwTW effluents. In this study, we examine whether such roach populations have evolved adaptations to tolerate estrogenic pollution by comparing frequency differences in single-nucleotide polymorphisms (SNPs) between populations sampled from rivers receiving either high- or low-level WwTW discharges. SNPs within 36 "candidate" genes, selected for their involvement in estrogenic responses, and 120 SNPs in reference genes were genotyped in 465 roaches. There was no evidence for selection in highly estrogen-dependent candidate genes, including those for the estrogen receptors, aromatases, and vitellogenins. The androgen receptor (ar) and cytochrome P450 1A genes were associated with large shifts in allele frequencies between catchments and in individual populations, but there is no clear link to estrogen pollution. Selection at ar in the effluent-dominated River Lee may have resulted from historical contamination with endocrine-disrupting pesticides. Critically, although our results suggest population-specific selection including at genes related to endocrine disruption, there was no strong evidence that the selection resulted from exposure to estrogen pollution.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Cyprinidae/genética , Estrogênios , Estrona , Humanos , Masculino , Rios , Vitelogeninas , Poluentes Químicos da Água/análise
14.
Genome Biol Evol ; 12(10): 1789-1805, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853348

RESUMO

Theory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favor the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male color patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low-predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.


Assuntos
Genoma , Poecilia/genética , Cromossomos Sexuais , Animais , Evolução Biológica , Feminino , Masculino
15.
Mol Ecol Resour ; 20(4): 1007-1022, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32293100

RESUMO

Oestrogenic wastewater treatment works (WwTW) effluents discharged into UK rivers have been shown to affect sexual development, including inducing intersex, in wild roach (Rutilus rutilus). This can result in a reduced breeding capability with potential population level impacts. In the absence of a sex probe for roach it has not been possible to confirm whether intersex fish in the wild arise from genetic males or females, or whether sex reversal occurs in the wild, as this condition can be induced experimentally in controlled exposures to WwTW effluents and a steroidal oestrogen. Using restriction site-associated DNA sequencing (RAD-seq), we identified a candidate for a genetic sex marker and validated this marker as a sex probe through PCR analyses of samples from wild roach populations from nonpolluted rivers. We also applied the sex marker to samples from roach exposed experimentally to oestrogen and oestrogenic effluents to confirm suspected phenotypic sex reversal from males to females in some treatments, and also that sex-reversed males are able to breed as females. We then show, unequivocally, that intersex in wild roach populations results from feminisation of males, but find no strong evidence for complete sex reversal in wild roach at river sites contaminated with oestrogens. The discovered marker has utility for studies in roach on chemical effects, wild stock assessments, and reducing the number of fish used where only one sex is required for experimentation. Furthermore, we show that the marker can be applied nondestructively using a fin clip or skin swab, with animal welfare benefits.


Assuntos
Cyprinidae/genética , Feminização/genética , Marcadores Genéticos/genética , Animais , Sequência de Bases , Cyprinidae/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/metabolismo , Estrogênios/metabolismo , Feminino , Feminização/metabolismo , Masculino , Rios , Análise de Sequência de DNA/métodos
16.
Sci Rep ; 9(1): 20054, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31873187

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Sci Rep ; 9(1): 11827, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413359

RESUMO

Metal pollution has made a significant impact on the earth's ecosystems and tolerance to metals in a wide variety of species has evolved. Metallothioneins, a group of cysteine-rich metal-ion binding proteins, are known to be a key physiological mechanism in regulating protection against metal toxicity. Many rivers across the southwest of England are detrimentally affected by metal pollution, but brown trout (Salmo trutta L.) populations are known to reside within them. In this body of work, two isoforms of metallothionein (MetA and MetB) isolated from trout occupying a polluted and a control river are examined. Using synthetic genetic array (SGA) analyses in the model yeast, Saccharomyces cerevisiae, functional genomics is used to explore the role of metallothionein isoforms in driving metal tolerance. By harnessing this experimental system, S. cerevisiae is used to (i) determine the genetic interaction maps of MetA and MetB isoforms; (ii) identify differences between the genetic interactions in both isoforms and (iii) demonstrate that pre-exposure to metals in metal-tolerant trout influences these interactions. By using a functional genomics approach leveraged from the model yeast Saccharomyces cerevisiae, we demonstrate how such approaches could be used in understanding the ecology and evolution of a non-model species.


Assuntos
Genes Sintéticos , Genômica , Metalotioneína/genética , Truta/genética , Animais , Genes Fúngicos , Saccharomyces cerevisiae/genética
18.
Evol Appl ; 8(6): 573-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26136823

RESUMO

Humans have exploited the earth's metal resources for thousands of years leaving behind a legacy of toxic metal contamination and poor water quality. The southwest of England provides a well-defined example, with a rich history of metal mining dating to the Bronze Age. Mine water washout continues to negatively impact water quality across the region where brown trout (Salmo trutta L.) populations exist in both metal-impacted and relatively clean rivers. We used microsatellites to assess the genetic impact of mining practices on trout populations in this region. Our analyses demonstrated that metal-impacted trout populations have low genetic diversity and have experienced severe population declines. Metal-river trout populations are genetically distinct from clean-river populations, and also from one another, despite being geographically proximate. Using approximate Bayesian computation (ABC), we dated the origins of these genetic patterns to periods of intensive mining activity. The historical split of contemporary metal-impacted populations from clean-river fish dated to the Medieval period. Moreover, we observed two distinct genetic populations of trout within a single catchment and dated their divergence to the Industrial Revolution. Our investigation thus provides an evaluation of contemporary population genetics in showing how human-altered landscapes can change the genetic makeup of a species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...